926 research outputs found

    Introducing TAXI: a Transportable Array for eXtremely large area Instrumentation studies

    Full text link
    A common challenge in many experiments in high-energy astroparticle physics is the need for sparse instrumentation in areas of 100 km2 and above, often in remote and harsh environments. All these arrays have similar requirements for read-out and communication, power generation and distribution, and synchronization. Within the TAXI project we are developing a transportable, modular four-station test-array that allows us to study different approaches to solve the aforementioned problems in the laboratory and in the field. Well-defined interfaces will provide easy interchange of the components to be tested and easy transport and setup will allow in-situ testing at different sites. Every station consists of three well-understood 1 m2 scintillation detectors with nanosecond time resolution, which provide an air shower trigger. An additional sensor, currently a radio antenna for air shower detection in the 100 MHz band, is connected for testing and calibration purposes. We introduce the TAXI project and report the status and performance of the first TAXI station deployed at the Zeuthen site of DESY.Comment: 4 pages, 3 figures, presented at ARENA 2014, Annapolis, MD, June 201

    Das Pierre-Auger-Observatorium in Argentinien

    Get PDF

    Optical Relative Calibration and Stability Monitoring for the Auger Fluorescence Detector

    Full text link
    The stability of the fluorescence telescopes of the Pierre Auger Observatory is monitored with the optical relative calibration setup. Optical fibers distribute light pulses to three different diffuser groups within the optical system. The total charge per pulse is measured for each pixel and compared with reference calibration measurements. This allows monitoring the short and long term stability with respect of the relative timing between pixels and the relative gain for each pixel. The designs of the LED calibration unit (LCU) and of the Xenon flash lamp used for relative calibration, are described and their capabilities to monitor the stability of the telescope performances are studied. We report the analysis of relative calibration data recorded during 2004. Fluctuations in the relative calibration constants provide a measure of the stability of the FD.Comment: 4 pp. To appear in the proceedings of 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, 3-11 Aug 200

    Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado

    Get PDF
    We describe an experiment, located in south-east Colorado, USA, that measured aerosol optical depth profiles using two Lidar techniques. Two independent detectors measured scattered light from a vertical UV laser beam. One detector, located at the laser site, measured light via the inelastic Raman backscattering process. This is a common method used in atmospheric science for measuring aerosol optical depth profiles. The other detector, located approximately 40km distant, viewed the laser beam from the side. This detector featured a 3.5m2 mirror and measured elastically scattered light in a bistatic Lidar configuration following the method used at the Pierre Auger cosmic ray observatory. The goal of this experiment was to assess and improve methods to measure atmospheric clarity, specifically aerosol optical depth profiles, for cosmic ray UV fluorescence detectors that use the atmosphere as a giant calorimeter. The experiment collected data from September 2010 to July 2011 under varying conditions of aerosol loading. We describe the instruments and techniques and compare the aerosol optical depth profiles measured by the Raman and bistatic Lidar detectors.Comment: 34 pages, 16 figure

    Tunka-Rex: the Cost-Effective Radio Extension of the Tunka Air-Shower Observatory

    Full text link
    Tunka-Rex is the radio extension of the Tunka cosmic-ray observatory in Siberia close to Lake Baikal. Since October 2012 Tunka-Rex measures the radio signal of air-showers in coincidence with the non-imaging air-Cherenkov array Tunka-133. Furthermore, this year additional antennas will go into operation triggered by the new scintillator array Tunka-Grande measuring the secondary electrons and muons of air showers. Tunka-Rex is a demonstrator for how economic an antenna array can be without losing significant performance: we have decided for simple and robust SALLA antennas, and we share the existing DAQ running in slave mode with the PMT detectors and the scintillators, respectively. This means that Tunka-Rex is triggered externally, and does not need its own infrastructure and DAQ for hybrid measurements. By this, the performance and the added value of the supplementary radio measurements can be studied, in particular, the precision for the reconstructed energy and the shower maximum in the energy range of approximately 1017101810^{17}-10^{18}\,eV. Here we show first results on the energy reconstruction indicating that radio measurements can compete with air-Cherenkov measurements in precision. Moreover, we discuss future plans for Tunka-Rex.Comment: Proceeding of UHECR 2014, Springdale, Utah, USA, accepted by JPS Conference Proceeding

    Confronting models on cosmic ray interactions with particle physics at LHC energies

    Full text link
    Inelastic pp collisions are dominated by soft (low momentum transfer) physics where perturbative QCD cannot be fully applied. A deep understanding of both soft and semi-hard processes is crucial for predictions of minimum bias and underlying events of the now coming on line pp Large Hadron Collider (LHC). Moreover, the interaction of cosmic ray particles entering in the atmosphere is extremely sensitive to these soft processes and consequently cannot be formulated from first principles. Because of this, air shower analyses strongly rely on hadronic interaction models, which extrapolate collider data several orders of magnitude. A comparative study of Monte Carlo simulations of pp collisions (at the LHC center-of-mass energy ~ 14 TeV) using the most popular hadronic interaction models for ultrahigh energy cosmic ray (SIBYLL and QGSJET) and for collider physics (the PYTHIA multiparton model) is presented. The most relevant distributions are studied including those observables from diffractive events with the aim of discriminating between the different models.Comment: 8 pages revtex, 8 figures, added reference

    Third Level Trigger for the Fluorescence Telescopes of the Pierre Auger Observatory

    Full text link
    The trigger system for the Auger fluorescence telescopes is implemented in hard- and software for an efficient selection of fluorescence light tracks induced by high-energy extensive air showers. The algorithm of the third stage uses the multiplicity signal of the hardware for fast rejection of lightning events with above 99% efficiency. In a second step direct muon hits in the camera and random triggers are rejected by analyzing the space-time correlation of the pixels. The trigger algorithm was tested with measured and simulated showers and implemented in the electronics of the fluorescence telescopes. A comparison to a prototype trigger without multiplicity shows the superiority of this approach, e.g. the false rejection rate is a factor 10 lower.Comment: 8 pages, 7 figures, to be published in NIM A; 1 typo correcte
    corecore